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Air quality modeling

Ambient air quality leads to millions of premature deaths 
annual (Cohen et la., 2017).

The same species leading to air pollution also impact climate 
change (some cooling, some warming), or are co-emitted 
with large sources of long-lived greenhouse gases (e.g., CO2, 
SO2, and NOx from power plants).

Air quality and climate models are used to evaluate the 
impacts of environmental policy and understand 
atmospheric processes.
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Our understanding of the magnitude of the inputs to these 
models, the emissions, are often accurate to 20% at best, 
1000% at worst

Elguindi et al, 2020



Data assimilation and inverse modeling

We have large networks of observations of atmospheric composition (aerosols, short and long-lived gases) from 
recent and future satellites

TEMPO SENT-4
GEMS

What do composition measurements tell us about the emissions? 
How does the state of a system contain information about the boundary conditions?



Operational chemical data assimilation and AQ forecasting

- routine assimilation of trace-gas satellite data
- use overly simplified representation of chemistry 

- assimilation for fires, smoke, 
- no routine assimilation of trace-gas satellite data

Europe: ECMWF US: NAQFC
AirNow 3 pm EDT

Computational cost prevents system for assimilating full suite of data using high-fidelity AQ model  



Background: computational challenges for AQ models

Previous machine-learning work in atmospheric models:
• Ozone ensemble forecast with machine learning algorithms [Mallet et al. (2009)]
• Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations [Nowack et al. (2018)]
• Orders-of-magnitude speedup in atmospheric chemistry modeling through neural network-based emulation [Kelp et al. (2018)]
• Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem … [Keller & Evans (2019)]
• Improving the prediction of an atmospheric chemistry transport model using gradient boosted regression trees [Ivatt & Evans (2019)]

-Trained with rigorous 
error controls 

-Generic toolbox 
applicable to 
numerous AQ models

Fast surrogate model

Classic ODE solver 

(50-90% of AQ model runtime)

Surrogate 
enabled AQ 

model

Air pollutant 
concentrations 
c(tk) c(tk+1)

The ODE solver can be replaced with a more 
efficient surrogate model to reduce 
computational cost



Objectives

Objectives and Information Technology (bold) :
• Develop, test, and deliver a surrogate model for chemistry in GEOS-Chem
• Generalize surrogate model generation procedure within a software toolbox 
• Demonstrate benefits of surrogate-based AQ modeling framework for chemical data assimilation of geostationary 

observations of atmospheric composition

Science goals:
• Develop new techniques for surrogate modeling of high-dimensional, non-linear, large-scale dynamical chemical systems
• Improve O3 forecasting through assimilating NO2 observations from geostationary remote sensing measurements. 

Partners:
• Nicolas Bousserez, ECMWF

Funding:
• NASA AIST AIST-18-0072



Overview of deep neural network & training data generation
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Sampling for training data to generate the 
surrogate model was taken randomly from hourly 
global GEOS-Chem 2x2.5 resolution simulations.



Parameters for training the neural network
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Of the 401 inputs to the ODE solver,

Currently, the ODE solver (for GEOS-Chem full chemistry) takes as inputs:
• 90 chemical species with variable concentrations
• 311 rate constants, each representing one reaction or other process

And outputs:
• 90 chemical species with variable concentrations

90 input conc

78 input conc
vary

12 input 
conc. = 0 

always (dry 
dep) 311 rate const

24 emis/dry 
dep

51 photolysis

236 other rxn

Temperature 
& pressure 
dependent 

only

For the surrogate model training, we have reduced the number of variables for each grid cell from 491 to 245:
• 78 input concentrations, 90 output concentrations, 75 rate constants, 1 temperature, 1 pressure



Satisfying R2 measures of the 90 surrogate models 

Samples from 
GEOS-Chem 
global 2x2.5

• DNN model (Ver 0)
(1) Independent surrogate models for respective chemical species
(2) 𝑅! values > 0.98 for all surrogate models 

Validation

Train
80%

20%
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Time-transient solutions (top: O3,  bottom: ISOP)



Difference in real-scaled and log-scaled comparisons

Ø NO2



Improvement from log-scaled training 

Ø NO2
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2 hours

6 hours

24 hours

With ODEs
90 separate surrogates are 
used here, as previously 
described (one per 
chemical species)

With surrogate

SDA = 2.08
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SDA = 1.11
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Significant digits of 
accuracy (SDA) - grid cell 
modified root mean square 
norm [Sandu et al. (1997), 
Henze et al. (2007)]

θO3 = # of grid cells with 
cO3 > 1e11 molec/mL

GEOS-Chem simulations of O3 over 24 hours



Recurrent Neural Network (RNN)
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§ the 𝒋-th data sample
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Improvement of O3 prediction from RNN network

Ø Previous model (left)
vs.
RNN model (right)



• Surrogate model development
• Ensemble of DDN models (one for each individual concentration)
• Tested / developed in box-model R&D using samples from 3D model

• 3D implementation: 
• Initial implementation (Ver 0) reasonable for a few hrs followed by error growth
• Now adding flexibility to accommodate multiple surrogate model versions

• Surrogate model updates for improved accuracy:
• Non-negative constraints
• Chemical and physical regimes
• Log-scaling
• RNN

• Next steps:
• Explore additional ideas for enhanced stability / accuracy 
• Apply to chemical data assimilation with GEOS-Chem
• Apply to other models: collect samples from CAMS model (ECMWF collaborator)
• Towards implementation of surrogate model generation within an Air Quality Analytic Center (AIST 

supplement, PI Thomas Huang, JPL)

Summary


